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Abstract

This paper studies the directed graph clustering problem through the lens of statistical
estimation. Our work builds on the directed stochastic block model, where we conduct
maximum likelihood estimation to infer the underlying community membership labels
and thereby ascertain the most probable community assignment given the observed graph
structure. Furthermore, we establish the equivalence between this statistical estimation
formulation and a novel flow optimization heuristic, which jointly considers two impor-
tant directed graph statistics: edge density and edge orientation. Building on this new
formulation of directed clustering, we introduce two efficient and interpretable directed
clustering algorithms, a spectral clustering algorithm and an semidefinite programming
based clustering algorithm. We establish a theoretical upper bound on the number of mis-
clustered vertices of the spectral clustering algorithm. We compare, both quantitatively
and qualitatively, our proposed algorithms with existing directed clustering methods on
synthetic data and real-world data thus providing further ground to our theoretical con-
tributions.
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1. Introduction

Graph clustering, or community detection, aims to partition a graph into disjoint clusters
(or communities) such that vertices within the same cluster are more “similar” to each
other compared to vertices from different clusters. As one of the most fundamental graph
data analysis methods, graph clustering is well motivated by the need to reveal hidden
patterns in real-world networks, such as segmenting images Shi and Malik (2000), finding
communities in social networks Oliveira and Gama (2012), and detecting pairwise lead-lag
communities in financial networks Bennett et al. (2022).

There has been extensive research on clustering undirected graphs. In particular, a large
volume of work Amini and Levina (2018); Hajek et al. (2016); Montanari and Sen (2016);
Abbe et al. (2015); Amini et al. (2013); Decelle et al. (2011); Chen et al. (2014); Li et al.
(2021) formulates graph clustering as estimating the planted communities of random graph
models, typically the stochastic block model (SBM) Holland et al. (1983) or its variants
Karrer and Newman (2011); Avrachenkov et al. (2020). These lines of work start with
applying statistical estimation methods, including maximum likelihood estimation and
maximum posterior marginal estimation, in order to estimate community labels. This
estimation procedure subsequently yields a combinatorial optimization formulation of the
graph clustering problem, such as minimizing the cross-community edges Abbe et al. (2015)
(similar to graph cut Shi and Malik (2000)), and modularity maximization Newman (2016).
These combinatorial optimization problems can further be relaxed or approximated, lead-
ing to computationally efficient clustering algorithms using spectral methods Von Luxburg
(2007); Newman (2013), semidefinite programming Amini and Levina (2018); Hajek et al.
(2016); Montanari and Sen (2016); Abbe et al. (2015); Li et al. (2021), and belief prop-
agation algorithms Decelle et al. (2011). Such a methodological framework enables the
integration of statistics, optimization, and spectral methods, and leads to a multi-viewed
understanding of the strengths and limitations of the clustering algorithms.

While most of the existing studies on graph clustering are only targeted for undirected
graphs, in a number of important applications, the relationships between vertices are not
symmetric, as seen in causal relationships Pearl and Verma (1987), interbank debt Ace-
moglu et al. (2015), and paper citations An et al. (2004). Employing undirected graph
representation in the aforementioned scenarios results in a loss of valuable information
pertaining to edge directionality. This underscores the necessity for studying the directed
graph clustering problem and developing fast and robust algorithms customized to the
specific task at hand. While it is not applicable to naively transfer undirected clustering
analysis to directed graphs due to the lack of symmetry of the adjacency matrix, a number
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of studies attempt to circumvent this challenge in different ways Malliaros and Vazirgiannis
(2013); we survey below two closely related approaches.

One line of work suggests a two-step framework, where they first restore the graph symme-
try and then apply classical undirected clustering algorithms. For example, some propose to
cluster the bibliographic coupling matrix AAT Kessler (1963), the co-citation matrix ATA
Small (1973), and bibliometric symmetrization AAT + ATA Satuluri and Parthasarathy
(2011). Performing clustering on such product of graph adjacency matrices implicitly
groups vertices based on some notion of higher-order structure. For instance, constructing
AAT involves counting the number of common “offspring” vertices. In a similar spirit,
Rohe et al. (2016) proposes a spectral algorithm denoted as DI-SIM, which builds on a
dual measure of similarity from both “parent” vertices and “offspring” vertices.

Another more recent line of research adopts complex-valued Hermitian matrices to repre-
sent directed graphs. These studies explore the graph structural information through the
analysis of the spectrum of Hermitian matrices, which leads to the creation of a variety of
directed clustering algorithms Cucuringu et al. (2020); Fanuel et al. (2017); Laenen and Sun
(2020). In Cucuringu et al. (2020), the authors suggest using a skew-symmetric Hermitian
matrix, employing ±i to represent directed edges, and subsequently clustering vertices
based on their embedding in the associated eigenspace. Later follow-up works Hayashi
et al. (2022); Laenen (2019) also point out a connection between the Hermitian clustering
algorithm in Cucuringu et al. (2020) and an optimization heuristic that maximizes the net
flow between two clusters. In Laenen and Sun (2020), the authors choose the k-th root of
unity to indicate a directed edge. They define a flow ratio optimization scheme and show
that the optimal partition is given at the bottom eigenspace of their proposed Hermitian
matrix. Other than optimization heuristics, the authors in Fanuel et al. (2017) also relate
directed clustering to quantum physics heuristics. They apply the Magnetic Laplacian for
spectral clustering on directed graphs, where this combinatorial Laplacian was initially
designed for studying the quantum dynamics of particles under the influence of magnetic
fluxes Shubin (1994).

Despite the success of the aforementioned methods in a variety of directed clustering tasks,
there remains a significant lack of insights from a statistical perspective. Such a point of
view is helpful as it allows one to justify why a particular clustering algorithm design is
deemed suitable based on the statistical properties of the data, i.e., the structures and
randomness inherent in random graph models. The rationales behind existing directed
clustering algorithms rely on prespecified favoured patterns or optimization heuristics. For
example, Cucuringu et al. (2020); Hayashi et al. (2022) optimize the between-cluster net
flow, while Laenen and Sun (2020); Rohe et al. (2016); Satuluri and Parthasarathy (2011);
Small (1973); Kessler (1963) count higher-order patterns. These algorithms, customized
for certain prespecified patterns, have weak connections to the properties of the real-world
data being studied, and there is a lack of rigorous arguments as to why and when those
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methods are desirable or effective. This motivates us to explore a design that comes with
a theoretical justification based on the statistical properties of the data. In this paper, we
study the maximum likelihood estimation (MLE) on the Directed Stochastic Block Model
(DSBM), and its implication for the development of efficient directed clustering algorithms.
Our work is mainly inspired by the multi-viewed research on the statistical estimation of
the SBM and the Hermitian matrix representations of directed graphs. We summarize our
main contributions as follows.

1. Problem formulation. Under the DSBM setting, we propose to formulate a maxi-
mum likelihood estimation on the community labelling, where we maximize the log-
likelihood function and thereby ascertain the most probable community assignment
given the observed graph structure. Building on the MLE derivation, we introduce a
novel Hermitian matrix representation for clustering directed graphs. In contrast to
Hermitian matrices proposed in earlier studies Fanuel et al. (2017); Cucuringu et al.
(2020); Laenen and Sun (2020), where the underlying optimization interpretations
are heuristic, our proposed Hermitian matrix is derived from a well-established sta-
tistical estimation method. The connection between our proposed Hermitian matrix
and MLE is established through the observation that the quadratic form of the Her-
mitian matrix associated with the complex community indicator vector, corresponds
to the optimization objective of the MLE (Theorem 1). Furthermore, we establish
the equivalence between the MLE on DSBM and a new (regularized) flow optimiza-
tion heuristic, as detailed in Section 3.2. This optimization heuristic jointly considers
both edge density and edge orientation when clustering directed graphs. Compared
with existing optimization heuristics that also take into account the cross-cluster edge
density and orientation Fanuel et al. (2017); Hayashi et al. (2022), our formulation
provides a theoretical justification for how we balance the weighting parameters of
the two terms. This flow optimization interpretation also extends the flexibility of
our formulation, as it allows one to go beyond the assumptions on the underlying
statistical model, and customize the weighting parameter between the cost incurred
from the edge density and the one incurred from the edge orientations, based on one’s
domain knowledge.

2 Efficient algorithms. Based on the above theoretical framework, we introduce two
new directed clustering algorithms, a spectral clustering algorithm (Algorithm 1) and
a semidefinite programming (SDP) clustering algorithm (Algorithm 2), both of which
are derived through relaxing the combinatorial optimization problem induced by the
MLE. As these MLE-driven algorithms require the DSBM parameters as input, we
adapt the iterative approach from Newman (2016) to learn the model parameters
from the observable graph data. The combination of our proposed algorithms and
the interactive learning method not only enables efficient computation on clusters,
but also ensures a self-adaptive process that operates without the need for any prior
knowledge. We compare our algorithms, both quantitatively and qualitatively, with
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existing directed clustering methods on synthetic data (Section 5.2) and real-world
data (Section 5.3). From these experiments, we observe that our proposed algorithms
consistently outperform existing methods in most of the cases we have experimented
with, thus providing further ground to our theoretical contributions.

3. Theoretical guarantee. We present a theoretical upper bound on the recovery error
of the spectral clustering algorithm (Algorithm 1). For graphs generated from the
DSBM, we establish, in Theorem 2, a high-probability upper bound on the number
of misclustered vertices using tools from matrix perturbation analysis. Prior work
Cucuringu et al. (2020) also proves an upper bound on the misclustering error on
DSBM. The main difference between our bound and prior work lies in the DSBM
setting. While Cucuringu et al. (2020) considers multiple equal-sized clusters with
uniform edge density, i.e., p = q, this study focuses on a more general two-cluster case,
where our analysis also covers scenarios with inhomogeneous edge density (p ̸= q)
and unequal cluster size (n1 ̸= n2). Furthermore, the analysis in Cucuringu et al.
(2020) holds only if the eigengap is large enough, whereas our bound does not require
any assumptions on the eigengap, and this is achieved by employing a variant of the
Davis-Kahan Theorem in our proof.

The rest of the paper is organized as follows. In Section 2 we provide notations and
background, and introduce the clustering problem under consideration. In Section 3, we
introduce our statistical estimation formulation and summarize the main results of this
study. In Section 4, we sketch the proof for the error bound on the Algorithm 1, and defer
some of the proof details to the appendix. In Section 5, we explain the implementation
details of our proposed algorithms, and report experimental results on both synthetic and
real-world data sets. In Section 6, we discuss the advantages and limitations of our work,
and highlight potential future improvements and avenues of research.

2. Preliminaries and problem formulation

2.1 Basic notations

Let G(V, E) be a directed graph on vertex set V and edge set E . For a pair of vertices
u, v ∈ V, we denote u ⇝ v if there is an edge pointing from u to v and we denote u ̸∼ v
if there is no edge between u and v. The edge set is a collection of ordered vertices pairs,
where ∀(u, v) ∈ E , we have u ⇝ v. A directed graph can be represented by its adjacency
matrix A ∈ {0, 1}N×N , where Auv = 1 iff u⇝ v. This research studies two-cluster directed
graphs, and we denote the clusters as C1 and C2, where C1, C2 are disjoint subsets of V.
We introduce community indicator vector σ to indicate the community assignment labels,
where σu = σv iff u, v are in the same community.
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This study involves both real-valued matrices in Rn×n and complex-valued matrices in
Cn×n. We use i to denote the imaginary unit

√
−1. For x ∈ C, we denote the conjugate

of x as x, and use |x| = to represent the norm of x. Let ℜ(·) be the operation of taking
the real part of a complex number, and ℑ(·) denote taking the imaginary part. When
the inputs of ℜ(·),ℑ(·) are matrices, we consider them as elementwise operations on every
entry of the matrix.

For a matrix H, we use HT to denote its transpose and H∗ to denote the conjugate

transpose and H∗ = H
T

. Let Hn×n be the set of Hermitian matrices of size n, where ∀H ∈
Hn×n we have H = H∗. For an arbitrary Hermitian matrix H, it has n real eigenvalues,
and throughout this paper, the eigenvalues are consistently organized in descending order
of magnitude, i.e., |λ1(H)| ≥ |λ2(H)| ≥ · · · |λn(H)|. We also employ several commonly
used matrices: we use In to denote the identity matrix of size n, and Jn to denote the
square all-one matrix of size n, while 1n is used to represent the all-one vector of length n.
When the matrix dimension can be inferred from the context, we may drop the subscript
for the sake of conciseness. This paper makes use of several matrix norms: we use ∥H∥ to
denote the spectral norm, which is the largest magnitude of any eigenvalues |λ1(H)|. We let

∥H∥F denote the Frobenius norm, where ∥H∥F =
√∑

j λ
2
j (H). For two matrices H1, H2

with the same number of rows, we use [H1, H2] to denote a new matrix by concatenating
the columns of H1 and H2. Let diag(H) denote the operator that creates a diagonal matrix
by considering the main diagonal elements of M . We use Tr(H) to denote the trace of the
matrix H.

This paper considers large graphs, where we provide both asymptotic and non-asymptotic
analysis. When it comes to asymptotic analysis, i.e., considering the graph size n converges
to infinity, we use the big-O notation as conventions: we use gn = O(fn) to denote that

|gn| is asymptotically bounded above by fn, i.e., lim sup
n→∞

|gn|
fn

< ∞. We denote gn dominate

f asymptotically as gn = ω(fn), where lim sup
n→∞

gn
fn

= ∞. We denote gn = Θ(fn) as gn

is bounded both above and below by fn asymptotically, where lim sup
n→∞

|gn|
fn

< ∞ and

lim inf
n→∞

|gn|
fn

> 0.

2.2 Directed Stochastic Block Model

The DSBM is a generative model for random directed graphs, initially proposed in Cu-
curingu et al. (2020). In this paper, we specialize their setting to the two-community
case, consisting of the source community C1 of size n1 and the target community C2 of
size n2. Here, the community membership labels are considered as fixed parameters that
are unknown, instead of treated as latent variables. We introduce a vector σ to indicate
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the community membership in the DSBM where σu = σv iff vertex u, v belongs to the
same community. The DSBM encodes the community information into the graph topology
through the edge density parameters p, q and the edge orientation parameter η. To be
more specific, for a directed graph sampled from the DSBM (n1, n2, p, q, η), the edges are
generated independently conditioning on the community labelling σ as follows

• if a pair of vertices u and v belongs to the same cluster, then with probability (w.p.)
p there exists an edge between them. This within-community edge is unordered in
the sense that the probability of this edge pointing from u to v is the same as the
probability of it pointing from v to u. In other words, we have that

Auv = 1, Avu = 0 w.p. p/2,

Auv = 0, Avu = 1 w.p. p/2,

Auv = Avu = 0 w.p. 1 − p.

• if u ∈ C1 and v ∈ C2 , then we have that the edge exists with probability q. The cross-
community edge is oriented in the sense that the probability of this edge pointing
from the C1 vertex to the C2 vertex is 1 − η, i.e.,

Auv = 1, Avu = 0 w.p. (1 − η)q ,

Auv = 0, Avu = 1 w.p. ηq,

Auv = Avu = 0 w.p. 1 − q.

Therefore, the conditional probability of a directed graph with adjacency matrix A is

P(A|σ) =
∏

(u<v)

P(Auv|σu, σv),

where the probability distribution of a vertex pair P(Auv|σu, σv) is specified in the above
discussed six cases.

We use pmax = max{p, q} to denote the maximum edge probability in DSBM (n1, n2, p, q, η).
Throughout the discussion in this paper, we assume that the maximum edge probability
is above the connectivity threshold Frieze and Karoński (2016), i.e.,

pmax = Ω(logN/N). (A-1)

This assumption is a necessary condition for us to provide a theoretical upper bound on
the number of misclustered vertices. Otherwise, if pmax = o(logN/N), then, with high
probability, the sampled graphs contain multiple components, and there is no proper way
to determine a cluster membership assignment over different components.
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2.3 Problem formulation

This study takes a statistical point of view on the clustering problem, considering a cluster
as a collection of statistically equivalent vertices. Following this line of thought, we assume
graphs are generated from the DSBM (n1, n2, p, q, η), where the edge generating process
between a pair of vertices depends only on the respective communities to which they
belong. Our goal of clustering is to estimate the underlying communities only based on
the observed graph topology, without any additional side information on the underlying
community structure. We introduce a complex community indicator vector σ ∈ {i, 1}N to
denote the ground truth community labelling of the DSBM, and we use σ̂ to denote the
estimated community labelling vector. We evaluate the efficacy of the community recovery
σ̂ by counting the number of misclustered vertices l(σ, σ̂), where

l(σ, σ̂) =
∑
j∈V

1(σj ̸= σ̂j).

3. Main results

3.1 Maximum Likelihood Estimation on DSBM

Given a graph with adjacency matrix A generated from the DSBM, we infer the community
labels in a way that renders the observed graph topology most probable. This intuition
is formally achieved by applying the maximum likelihood estimation (MLE), where the
desired community labelling maximizes the log-likelihood function. To be more concrete,
we consider a directed graph with adjacency matrix A sampled from the DSBM, and we
also assume that the DSBM parameters p, q, η are known. Then, the MLE on community
assignments can be formally written as

σ̂MLE = arg max
σ∈{i,1}N

L(A;σ), (1)

where L(A;σ) is the log-likelihood function and

L(A;σ) =
∑
u<v

log(P(Au,v|σu, σv)). (2)

We present in Theorem 1 the explicit optimization formulation derived from the MLE
on DSBM (1). The key step in the derivation is to describe the optimization objective,
the log-likelihood function L(A;σ). We manage this simply by grouping the terms in (2)
according to the community assignment of vertex pairs in each term, which we summarize in
Lemma 7. We then convert the real-valued optimization problem in Lemma 7 to its complex
equivalence. The purpose of this conversion is to obtain a more compact expression of the
optimization problem, where the optimization objective is a simple quadratic form. The
detailed proof of Theorem 1 can be found in Appendix A.2.
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Theorem 1 (MLE on DSBM) Consider a directed graph A generated from the model
DSBM(n1, n2, p, q, η). Let x ∈ {i, 1}N be the indicator vector, where xu = i if u ∈ C1,
and xu = 1 if u ∈ C2 . The maximum likelihood estimation on the community labels is
equivalent to solving the following complex optimization problem

max x∗H̃x (Herm-MLE)

s.t. x ∈ {1, i}N ,

where H̃ is a Hermitian matrix and

H̃ = −i log
1 − η

η
(A−AT ) + log

p2

4η(1 − η)q2
(A + AT ) + 2 log

1 − p

1 − q
(J − I −A−AT ).

(3)

≜ wii(A−AT ) + wr(A + AT ) + wcJ.

3.2 A regularized flow optimization interpretation

In this section, we present a different view on the (Herm-MLE) problem by relating it to
a flow optimization heuristic. In particular, we explain how the real and imaginary parts
of the Hermitian matrix contribute to the edge density optimization and edge orienta-
tion optimization separately. This alternative view extends the flexibility of our proposed
methodology, as it allows one to consider different matrix constructions that depend on
their own judgment about what a “good” metric for modularity in directed graphs ought
to be.

We start by defining graph statistics that are of interest in directed clustering tasks. Given
two clusters C1, C2 in a directed graph, we use TF(C1, C2) to denote the total flow, which
is the number of cross-cluster edges given by

TF(C1, C2) =
∑

u∈C1v∈C2

(Auv + Avu).

We use NF(C1, C2) to denote the net flow from C1 to C2, which is the number of edges
pointing from C1 to C2 subtracting the number of edges from C2 to C1

NF(C1, C2) =
∑

u∈C1v∈C2

(Auv −Avu).

Recall that the Hermitian matrix we derived is H̃ = wr(A + AT ) + iwi(A − AT ) + wcJ ,
and the objective in (Herm-MLE) is

x∗H̃x = wrx
∗(A + AT )x + iwix

∗(A−AT )x + wcx
∗Jx, (4)
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where the indicator vector x ∈ {1, i}N and xu = i if u ∈ C1 and xu = 1 if u ∈ C2.

For the first term in (4), one can easily verify that x∗(A+AT )x counts the number of edges
within C1 plus the number of edges within C2, which can be equivalently written as

1

2
x∗(A + AT )x = C −TF(C1, C2), (5)

where the constant C is the total number of edges in the graph.

For the second term in (4), one can derive that ix∗(A − AT )x is the number of edges
pointing from C1 to C2 subtracting the number of edges from C2 to C1, and thus

i

2
x∗(A−AT )x = NF(C1, C2). (6)

The last term in (4) is weighted by wc = log(1− p)− log(1− q) = Θ(p− q), which is a very
small constant. If we ignore this term for the moment, we then have that (Herm-MLE)
optimizes a weighted combination of net flow and total flow: −wrTF(C1, C2)+wiNF(C1, C2).
This optimization view agrees with the intuition that we aim to find a proper partition
that considers both the edge density difference and the edge orientation between clusters.
This optimization heuristic also shares a similar intuition with the cut imbalance ratio
|NF(C1,C2)|
2TF(C1,C2) from Cucuringu et al. (2020), where the authors proposed it as a measure of
edge imbalance between clusters.

The last term in (4) x∗Jx simply calculates n2
1 + n2

2. By maximizing it, we implicitly
penalize or encourage imbalanced clusters, depending on the sign of wc. Adding an all-
one matrix into the graph representation matrix also appears in previous studies, where
this technique is known as regularization. Existing studies such as Amini et al. (2013);
Joseph and Yu (2016); Le et al. (2017) have shown both theoretically and empirically that
adding a regularization term will improve the performance of spectral clustering in the
sparse regime, where the graph edge density is p, q = o( logNN ), even as low as p, q = Θ( 1

n)
which is the very sparse regime often arising in certain applications involving large-scale
graphs. All the above studies only consider undirected graphs, with a real-valued matrix
representation, and there is no analysis known for directed graphs.

Statistical estimation v.s. combinatorial optimization. Although in this section we
have demonstrated the equivalence between MLE and the regularized flow optimization,
it is still worth mentioning the difference between an optimization view and a statisti-
cal view. From a statistical perspective, clustering aims at recovering the probabilistic
equivalent structure, while from an optimization standpoint, clustering is purely driven by
finding structures that optimize the objectives, which can be irrelevant to the underlying
data-generating model. In cases where the underlying probabilistic models are unknown
or mathematically intractable, an optimization objective can explicitly guide the goal of
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clustering and serve as a metric for evaluating cluster results. In this vein, our flow op-
timization framework is ready to be extended to a more general weighted graph setting
without specifying a generating model. In addition to model independence, an optimiza-
tion framework also naturally provides a way to integrate prior knowledge as constraints,
leading to new constrained optimization formulations on directed clustering.

3.3 Proposed algorithms

In Section 3.1, we derive the optimization formulation for directed clustering (Herm-MLE)
through applying MLE on the DSBM, and in Section 3.2, we discuss the heuristic interpre-
tation for this problem. We now move on to presenting two efficient algorithms for solving
the optimization problem (Herm-MLE). First note that exactly solving the above com-
binatorial optimization problem (Herm-MLE) involves enumerating all 2N combinations
in the worst case and is an NP-hard problem. For computational efficiency, we consider
relaxing the problem (Herm-MLE) to some continuous convex domain and then project-
ing the relaxed solutions back to the indicator vectors. In this study, we introduce the
following two relaxations: spectral relaxation and SDP relaxation, which lead to two new
directed graph clustering algorithms, the spectral clustering algorithm (Algorithm 1) and
SDP clustering algorithm (Algorithm 2).

The spectral relaxation. The general idea here is to relax the integer constraints in
(Herm-MLE) to the continuous complex domain, and we arrive at the following new opti-
mization problem

max x∗H̃x (SC-MLE)

s.t. x ∈ CN

∥x∥22 = N

Here, the continuous optimization problem (SC-MLE) is analytically solvable, and its max-
imum is attained when x is a rescaled (by

√
N) version of the leading eigenvector of H̃.

Note that the top eigenvector is not unique in the sense that its multiplication with eiθ

is also a top eigenvector for any θ ∈ [0, 2π]. For this reason, we use the k-means algo-
rithm to project the relaxed solution back to a complex indicator vector, which produces
rotation-invariant results. We formally present the directed spectral clustering algorithm
in Algorithm 1. To provide further intuition on this spectral algorithm, we visualize in
Figure 1b the vertex embedding given by the top eigenvector, which is the key step of
Algorithm 1.

The SDP relaxation. Another commonly used relaxation, which relies on semidefinite
programming, considers lifting the vector variables x ∈ CN to a matrix. Because the
objective in (Herm-MLE) has x∗H̃x = Tr(H̃xx∗), through defining X = xx∗ we obtain
x∗H̃x = Tr(H̃X). Correspondingly, the integer constraints x ∈ {1, i}N amount to con-

12



Input : directed graph G(V, E), DSBM parameters {p, q, η}
Output: community labels σ̂

1 Compute the Hermitian matrix H̃ according to (3) ;

2 Compute the top eigenvector v̂ of H̃ ;
3 Apply k-means on the matrix [ℜ(v̂),ℑ(v̂)] to partition V into 2 clusters;

Algorithm 1: MLE Spectral Clustering Algorithm

straints on X, and we further relax them to obtain the following Hermitian SDP

max Tr(H̃X) (SDP-MLE)

s.t. X ∈ HN×N

X ⪰ 0

diag(X) = I.

Although more intricate than the spectral relaxation, this SDP can still be solved efficiently
with standard optimization tools, which we discuss in more detail in Section 5. To project
the SDP solution X back to an indicator vector, we first compute the leading eigenvector
of X which provides the best rank-1 approximation of it. Then we apply the k-means
algorithm on the embedding space given by this eigenvector, and obtain the two-cluster
partition of the graph. We summarize the implementation steps in Algorithm 2. The
embedding space given by the leading eigenvector of X is visualized in Figure 1c.

Input : directed graph G(V, E), DSBM parameters {p, q, η}
Output: community labels σ̂

1 Compute the Hermitian matrix according to (3);
2 Solve (SDP-MLE) and compute the top eigenvector v̂ of the SDP solution;
3 Apply k-means on the matrix [ℜ(v̂),ℑ(v̂)] to partition V into 2 clusters.

Algorithm 2: MLE SDP Clustering Algorithm

The difference between the algorithms stems from their choice of relaxation. Compared
with the spectral clustering algorithm, the SDP relaxation approach preserves the con-
straint diag(X) = I; therefore, one might expect that the SDP algorithm should yield
clustering results closer to the solutions from the original combinatorial optimization prob-
lem (Herm-MLE) compared to the spectral clustering. However, in practice, we observe
that the two algorithms achieve nearly the same performance on synthetic data sets (for
example, see Figure 8 in Appendix). Moreover, with nearly the same performance, the
spectral clustering algorithm is computationally more efficient than the SDP approach (see
Section 5 for detailed comparison). Nevertheless, we contend that studying SDP clustering
remains beneficial, as this SDP optimization framework can accommodate various linear
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(b) Spectral embedding
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(c) SDP embedding

Figure 1: We sample a directed graph A from the DSBM with n1 = 500, n2 = 500, p = q =
5%, η = 5%. To highlight the direction of each edge, we visualize A − AT in (a), where a
blue point represents a directed edge from its row index to the column index and a red pixel
means the direction is from the column index to the row index. Given this directed graph,
we compute H̃ using (3) and plot in (b) the top eigenvector of H̃ that gives the embedding
of the vertex that separates the two clusters. The SDP embedding in (c) is obtained by
first solving (SDP-MLE) and then plotting the top eigenvector of the SDP solution. Note
that compared with spectral embedding, vertices in (c) reside on the unit circle, which is
mainly due to the extra linear constraint diag(X) = I in the SDP relaxation.

constraints, thereby offering flexibility to incorporate additional side information such as
cluster sizes.

3.4 Error bound of Algorithm 1

In this section, we present an upper bound on the number of misclustered vertices using the
spectral clustering algorithm. We use σ to denote the ground truth community indicating
vectors, and σ̂ denote the clustering result of Algorithm 1. Recall that we define l(σ, σ̂) as
the number of misclustered vertices, where l(σ, σ̂) =

∑
j 1(σj ̸= σ̂j). While some difficult

input graph instances may result in relatively large values of l(σ, σ̂), we do not focus on
providing guarantees for these worst-case scenarios. Instead, our focus lies on the majority
of instances sampled from the DSBM, and we prove that with high probability, graphs
sampled from the DSBM have bounded misclustering error, under Algorithm 1.

Theorem 2 (Error bound on Algorithm 1) For graphs generated from the DSBM (n1, n2, p, q, η),
let σ̂ be the (1 + ϵ)-approximate solution of k-means from Algorithm 1. Then there exists

C = Θ
(√

w2
r + w2

i

)
(see (13)) and an absolute constant ϵ0, such that with probability at

least 1 −N−ϵ0, the error rate is such that

l(σ, σ̂)

N
≤ 64(2 + ϵ)C2pmax logN

d2∆2
. (7)

14



Here ∆ lower bounds the eigengap λ1(E[H̃])−λ2(E[H̃]) and its expression is given in (11).
The centroid distance d is the distance between the two distinct values of the top eigenvector
of E[H̃] and its expression is given in (21).

The error bound that we obtain in Theorem 2 is inversely proportional to d2 and ∆2. Both
d and ∆ are determined by the population matrix E[H̃], which is the expected value of
H̃. The entries of E[H̃] are community-dependent and the values are determined by the
model parameters p, q, and η, so as the centroid distance d and ∆. To establish a more
explicit connection between the error bound (7) and the DSBM parameters, we explore a
particular case that provides analytical forms on the error bound, and present in Corollary 3
interpretable error bounds on DSBM (N/2, N/2, p, p, η). The proof of Corollary 3 can be
found in Appendix A.3.

Corollary 3 Consider directed graphs generated from the DSBM (N/2, N/2, p, p, η). As
N → ∞, if η ≤ 0.5 − ϵ with an absolute constant ϵ > 0, then the misclustering error of
Algorithm 1 is such that

l(σ, σ̂)

N
= O

(
logN

Np

)
(8)

If η = 0.5 − o(1), we have that

l(σ, σ̂)

N
= ω

(
logN

Np

)
. (9)

From (8) and (9), we infer that the error bound is inversely proportional to the average
degree Np. This aligns with our intuition that DSBMs with a larger average degree provide
more observations on edge orientations, rendering the generated graph more informative,
and consequently lead to a smaller clustering error. Furthermore, for the noise level η,
when η → 0.5, the cross-cluster edges become nearly disordered and thus boost up the
clustering error. This intuition is reflected in the different orders of the upper bounds
provided in (8) and (9).

4. Perturbation analysis on Algorithm 1

The key idea behind the spectral clustering algorithm (Algorithm 1) is that eigenvectors of
the data matrices contain crucial information revealing the underlying community struc-
ture. Here, we rigorously articulate this using matrix perturbation analysis, and derive the
error bound (7) as presented in Theorem 2. Our analysis builds on the following simple
intuition: for directed graphs sampled from the DSBM, the expected value of our proposed
Hermitian matrix E[H̃], also known as the population version of the matrix H̃, has a clear
block-wise structure, and its top eigenvector v = v1(E[H̃]) has exactly two distinct values
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that perfectly indicate the true community labels. In practice, however, this well-behaved
matrix E[H̃] is unobservable , and we consider the observable Hermitian matrix H̃ as a
corrupted version of E[H]. We know from classical matrix perturbation analysis that, if
H̃ deviates not far away from its population version E[H̃], one would expect that the top
eigenvector of v̂ = v1(H̃) might continue to be informative, leading to a relatively good
recovery of the true community labels. Our proof of the error bounds follows a standard
procedure, with the following main steps

(i) Using matrix perturbation theory, we characterize the eigenvector perturbation ∥vv∗−
v̂v̂∗∥F in Section 4.1;

(ii) Using the Matrix-Bernstein concentration inequality from random matrix theory, we
provide a high-probability upper bound on the random perturbation ∥H̃ − E[H̃]∥ in
Section 4.2;

(iii) Combining the results from the above two steps, we perform an error analysis on
the k-means clustering step, and present the final spectral clustering error bound in
Section 4.3.

4.1 Bounding perturbation on the top eigenvectors

We first characterize properties on the eigenspace of the population matrix and show that
v = v1(E[H̃]) perfectly recovers the community labels. Then we upper bound how far v̂
deviates from v using the Davis-Kahan Theorem on eigenspace perturbation.

4.1.1 Eigenspace of the population version – the ideal case

For a directed graph generated from DSBM with two communities, entries of the matrix
E[H̃] have community-dependent values. To express this in a compact way, we use a cluster
membership matrix M ∈ {0, 1}N×2 to represent the ground truth community labelling,
where Mu1 = 1 indicates that vertex u belongs to the community C1, and Mu2 = 1 denotes
u ∈ C2. We consider the two communities to have no shared vertices, and thus the two
column vectors of M are orthogonal. Using the membership matrix, we can write out E[H̃]
as follows

E(H̃) = MQMT − (pwr + wc)I,

Q ≜ iwi(1 − 2η)q

[
0 1
−1 0

]
+ wr

[
p q
q p

]
+ wc

[
1 1
1 1

]
.

By defining the 2×2 matrix Q, we have (MQMT )u,v = Qc(u),c(v) where c(·) : V → {1, 2} is

a function that maps a vertex to its true community. The matrix MQMT is of rank two,
and its top eigenvector has exactly two distinct values, indicating the community labels.
Since H̃ and MQMT share the same top eigenvector, we can easily calculate the eigenpairs
of Q and then combine them with M to obtain the eigenvectors of E[H̃]. We summarize the
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eigenspace properties of E[H̃] in the following Lemma 4, and leave the detailed computation
to Appendix A.3

Lemma 4 For the DSBM(n1, n2, p, q, η), the population version of the proposed Hermitian
matrix E[H̃] has a unique largest eigenvalue. The top eigenvector v has exactly two distinct
values that indicate the community labels where the distance between them d can be easily
computed using (21). Moreover, the eigengap

|λ1(E[H̃]) − λ2(E[H̃])| = min{∆, |1/2N(wrp + wc)| + 1/2∆} ≥ 1/2∆. (10)

where

∆ =
√
N2(wrp + wc)2 − 4n1n2 ((wrp + wc)2 − |wr + wc + iwi(1 − 2η)q|2) (11)

4.1.2 Perturbation analysis on the top eigenvectors

For DSBM(n1, n2, p, q, η), the population matrix E[H̃] is unobservable, but from the gen-
erated graph we are able to construct the matrix H̃. We consider H̃ as a perturbed
version of E[H̃] and use R = H̃ − E[H̃] to denote the random perturbation. Correspond-
ingly, the perturbation on the eigenspace and eigenvalues are characterized by the following
two well-known theorems Davis-Kahan’s perturbation bound (Theorem 9) and Wyle’s in-
equality (Theorem 10), from which we derive an upper bound on the eigenspace distance
∥vv∗ − v̂v̂∗∥F . We summarize the eigenspace perturbation result in Lemma 5 and deffer
the proof details to appendix A.3.

Lemma 5 Given a directed graph from DSBM(n1, n2, p, q, η) and its Hermitian matrix
representation H̃, the projection matrix of the top eigenvector has

∥vv∗ − v̂v̂∗∥F ≤ 2
√

2
∥R∥

λ1(E[H̃]) − λ2(E[H̃])

4.2 Bounding the random perturbation R

The goal of this section is to establish a high-probability upper bound on ∥R∥, where R is
the random perturbation with the following form

R = H̃ − E[H̃]

= iwi(A−AT ) − (1 − 2η)qM

[
0 i
−i 0

]
MT + wr(A + AT ) − wrM

[
p q
q p

]
M − wrpI.

From the expression above, we observe that each entry of R has a bounded absolute value as
well as a bounded variance. Therefore, using the Matrix Bernstein inequality on Hermitian
matrices (Lemma 12), we can directly obtain a high-probability upper bound on ∥R∥, which
we present in Lemma 6. The proof details of Lemma 6 can be found in Appendix A.3.
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Lemma 6 (Bound on random perturbation R) Consider a directed graph from DSBM
(n1, n2, p, q, η) and its Hermitian matrix representation H̃. We use pmax = max{p, q} to
denote the maximum edge probability. Assume that the maximum edge probability is above
the connectivity threshold, i.e.,

Npmax = Ω(logN). (12)

Then there exist an absolute constant ϵ and

C = (2 + ϵ)
√
w2
r + w2

i

(
logN

Npmax
+ 1

)
= Θ

(√
w2
r + w2

i

)
, (13)

such that the random perturbation R = H̃ − E[H̃] has

P(∥R∥ ≥ C
√

Npmax logN) ≤ N−ϵ.

4.3 Error analysis on Theorem 2

Theorem 2 (Error bound on Algorithm 1) For graphs generated from the DSBM (n1, n2, p, q, η),
let σ̂ be the (1 + ϵ)-approximate solution of k-means from Algorithm 1. Then there exists

C = Θ
(√

w2
r + w2

i

)
(see (13)) and an absolute constant ϵ0, such that with probability at

least 1 −N−ϵ0, the error rate is such that

l(σ, σ̂)

N
≤ 64(2 + ϵ)C2pmax logN

d2∆2
. (7)

Here ∆ lower bounds the eigengap λ1(E[H̃])−λ2(E[H̃]) and its expression is given in (11).
The centroid distance d is the distance between the two distinct values of the top eigenvector
of E[H̃] and its expression is given in (21).

Proof Recall that the key steps of our spectral clustering algorithm (Algorithm 1) involves:
first compute the top eigenvector of H̃, and then cluster the vertices using k-means on the
embedding space given by the real and imaginary part of the top eigenvector. We use
Û = [ℜ(v̂),ℑ(v̂)] to denote the embedding space given by the top eigenvector of H̃ and
U = [ℜ(v),ℑ(v)] for that of E[H̃], where both U, Û ∈ RN×2. For the clustering outcomes,
we denote by σ̂ the clustering result using H̃, and use σ to represent the clustering given
by E[H̃]. Given that the k-means clustering step achieves a (1 + ϵ) approximation, using
the error bound (32) from Lemma 13, we have that

l(σ, σ̂)d2 ≤ 4(4 + 2ϵ)∥Û − U∥2F ,

where d is the distance between the two cluster centroids of the population version E[H̃],
with its expression provided in (21). Given that a rotation of Û does not change the
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k-means clustering result, the tightest upper bound we can obtain is

l(σ, σ̂)d2 ≤ 4(4 + 2ϵ) min
O∈O2

∥Û −OU∥2F = 4(4 + 2ϵ) min
r∈C1

∥v − rv̂∥2F ≤ 4(4 + 2ϵ)∥v̂v̂∗ − vv∗∥2F ,

(14)

where the first equality follows from the fact that ∥U − Û∥F = ∥v − v̂∥F and the last
inequality follows from Lemma 11.

Recall that combining Lemma 4, Lemma 5 and Lemma 6, we can derive that for a absolute
constant ϵ0, with probability at least 1 −N−ϵ0

∥v̂v̂∗ − vv∗∥F ≤ 2
√

2C
√
Npmax logN

λ1(E[H̃]) − λ2(E[H̃])
≤ 2

√
2C

√
Npmax logN

∆
. (15)

Combining (14) and (15), we eventually obtain that with probability at least 1−N−ϵ0

l(σ, σ̂)

N
≤ 64(2 + ϵ)C2pmax logN

d2∆2
.

5. Algorithmic implementation and experiments

5.1 Implementation details and complexity analysis

This section outlines the implementation details of our proposed algorithms. Our MATLAB
code is available on Github1.

Implementation details of the Spectral Clustering Algorithm. Algorithm 1 re-
quires computing the top eigenvector of the Hermitian matrix, with a compute time of
O(N2) via the power method. For the k-means step, we employ the k-means++ algorithm
Arthur et al. (2007), which produces solutions O(log 2) competitive to the optimal k-means
solution.

Implementation details of the SDP Algorithm. One way of solving the (SDP-MLE)
in polynomial time is to use standard interior point methods based tools, such as SDPT3
Toh et al. (2012) and Mosek. However, those solvers are quite memory intensive for large
graphs (in practice, around thousands of vertices). To avoid memory outage, in this paper,
we used the Burer-Monteiro approach Burer and Monteiro (2003), which is a rank-restricted

1. https://github.com/ningz97/MLE-DSBM
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non-convex programming algorithm that allows a much smaller search space. The Burer-
Monteiro method considers the following optimization problem

max Tr(Z∗H̃Z) (MLE-BM)

s.t. Z ∈ CN×r

diag(ZZ∗) = IN .

This non-convex optimization problem (MLE-BM) is guaranteed to map to the global
optimal of the SDP when the rank satisfies r2 > N Boumal et al. (2016). For solving
(MLE-BM), one can use either the Augmented Lagrangian method Boyd et al. (2011) or
manifold optimization tools Boumal (2023). With all these in mind, we summarize the
steps of the clustering algorithm in Algorithm 3.

Input : directed graph G(V, E) of size N , DSBM parameters {p, q, η}
Output: community labels σ̂

1 Compute the Hermitian matrix according to (3);

2 Solve (MLE-BM) with r = ⌈
√
N⌉ and compute the top eigenvector of the solution

v̂;
3 Apply k-means on the concatenated matrix [ℜ(v̂),ℑ(v̂)];

Algorithm 3: Burer-Monteiro for MLE clustering

Learning Model Parameters. Note that our proposed algorithms, Algorithm 1, Algo-
rithm 2 and Algorithm 3, all require knowing the DSBM parameters as inputs so that one
can compute the MLE Hermitian matrix using (3). Such a requirement is often practically
infeasible because it is hard to compute or approximate p, q and η without knowing the
true community label. To circumvent this limitation, we adopt an iterative approach from
Newman (2016), and combine it with our proposed clustering algorithms to learn the model
parameters. We summarize this iterative clustering approach in Algorithm 4.

We conduct empirical tests on this iterative approach on directed graphs generated from
the DSBM ensemble. In Figure 2, we show how the learned model parameters vary as
one repeats the updating process in Algorithm 4. Through our study on the synthetic
data set, we observe that in most cases, this iterative algorithm converges near the truth
model parameters very fast (within 10 iterations). We comment that sometimes a bad
initialization may lead to slower convergence or even learning the wrong model parameters.
Although this rarely occurs, we suggest initializing the Hermitian matrix as H̃0 = i(A −
AT ), which is the Hermitian matrix proposed in Cucuringu et al. (2020), as it provides a
relatively good initialization of the clustering, and facilitates the iterative learning of the
parameters.
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Input : directed graph G(V, E), threshold t
Output: estimated DSBM parameters {p, q, η}, community label σ̂

1 Randomly initialize p, q, and η;
2 Apply MLE-driven algorithms clustering (Algorithm 1, Algorithm 2 or

Algorithm 3) and get two clusters C1, C2;
3 Update the DSBM parameters as follows:

p := |E|−TF(C1,C2)
(|C1|2 )+(|C2|2 )

, which is the within-community edge frequency;

q := TF(C1,C2)
|C1|×|C2| , which is the between-community edge frequency;

η := min
{

|(C1×C2)∩E|
TF(C1,C2) , |(C2×C1)∩E|

TF(C1,C2)

}
, which computes the ratio of oriented

cross-community edges;
4 Repeat step 2 and step 3 until the update is below the convergence threshold t;
5 Finalize the clusters using MLE-driven algorithms with converged DSBM

parameters.

Algorithm 4: Iterative MLE clustering
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Figure 2: Illustration on the convergence of iterative learning algorithm. We first sample a
directed graph from DSBM with n1 = n2 = 1000, p = 2%, q = 1%, η = 0.1. Then starting
from a random guess on the model parameters, we apply Algorithm 4 to learn the DSBM
parameters. The lines with circles represent model parameter learning using the spectral
clustering algorithm (Algorithm 1) and those with stars represent learning with the SDP
clustering algorithm (Algorithm 3).
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5.2 Experiment on DSBM synthetic data

In this section, we conduct experiments on directed graphs sampled from the DSBM with
different model parameters p, q, η. To measure the performance of each algorithm, we
calculate the Adjusted Rand Index (ARI) Gates and Ahn (2017), which quantifies how
well the clustering output aligns with the ground truth community labelling. The ARI
takes value in [−1, 1], where an ARI value of 1 indicates a perfect recovery on the ground
truth; a nearly 0 ARI implies that the recovery is almost like a random guess; and −1
indicates that the recovered clusters are completely different from the ground truth.

In the experiments, we cluster the directed graphs using our proposed spectral clustering
algorithm (MLE-SC) and the SDP clustering algorithm (MLE-SDP), where we assume
no prior knowledge about the model parameters and we employ the iterative learning
approach to learn them from data. We compare our proposed algorithms with other existing
approaches for clustering directed graphs: the DI-SIM algorithm in Rohe et al. (2012), the
Hermitian clustering algorithms from Cucuringu et al. (2020) (Herm and HermRW), the
bibliometric symmetrization from Satuluri and Parthasarathy (2011) (B-Sym), and spectral
clustering on naive symmetrization using A + AT .

Experiments on DSBM with p = q. We first conduct experiments on DSBM graphs
with homogeneous edge probability. With p = q, the generated directed graphs have
roughly the same between-cluster and within-cluster edge densities, therefore community
recovery can only rely on the information attached to the edge directions. In each of the
experiments, we independently sample 10 directed graphs with a fixed parameter set, and
we averaged the ARI values over these graph samples. We summarize the ARI compar-
isons in Figure 3. From the quantitative comparisons, we observed that our proposed
MLE-SC (Algorithm 4 with Algorithm 1) and MLE-SDP (Algorithm 4 with Algorithm 2)
attain nearly the same performance, and they outperform all other algorithms when the
noise value η is small. In the high-noise regime, i.e., η close to 0.5, DI-SIM is the best-
performing algorithm. For a more intuitive illustration, we also include in Appendix A.5.2
the adjacency matrix before and after applying the clustering algorithm.

Experiments on DSBM with p ̸= q. We consider experiments for which the edge den-
sities are different, and test on graphs from DSBM with p ̸= q. In Figure 4, we summarize
the comparisons of the clustering results on directed graphs sampled with different values
of p, q. As before, each reported ARI value is obtained by averaging over 10 indepen-
dently sampled directed graphs with fixed DSBM parameters. We observed that overall
our proposed algorithm MLE-SC has the highest ARI while the performance of MLE-SDP
is slightly worse than MLE-SC. To explain this difference, we conduct the same experiment
using true DSBM parameters as inputs. With true model parameters as inputs, we observe
that Algorithm 1 and Algorithm 3 attain the same empirical performance (see Figure 8 in
Appendix A.5.1). Therefore, we conclude that the gap between MLE-SC and MLE-SDP in
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Figure 3: Performance comparison of all algorithms on DSBM with p = q (for three
different values of the edge density) and varying η.
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Figure 4: ARIs on DSBM with p ̸= q and varying η

Figure 4 is not intrinsic to the MLE-based algorithms, but rather due to the convergence
issue of the iterative learning approach.

It is worth mentioning that our MLE-based Hermitian clustering algorithms empirically
outperform the other two closely related Hermitian clustering algorithms, namely Herm
and HermRW from Cucuringu et al. (2020). The main difference between the latter two
algorithms and our approaches is that our proposed Hermitian matrix contains both real
and imaginary components with a derived weighting parameter. Recall that from the opti-
mization interpretation in Section 3.2, we derived that ℜ(H̃) corresponds to the TF(C1, C2)
optimization, and ℑ(H̃) corresponds to the NF(C1, C2) optimization. Therefore, this com-
parison between our proposed algorithms and those in Cucuringu et al. (2020) suggests
the importance of having a joint analysis of the edge density and edge orientation when
clustering directed graphs.
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5.3 Experiments on real-world data sets

We first perform experiments on the real-world data set email-Eu-core Leskovec et al.
(2007), which is a network containing email exchange data from European research insti-
tutions. In this network, there is an edge (u, v) if a person u sent person v at least one
email. This dataset comes with “ground-truth” community membership labelling, where
each community represent one of the 42 departments at the research institute. We perform
experiments on two-community subgraphs of the email-Eu-core dataset by selecting pairs
from the three largest communities in the data set. We compare the cluster results with the
“ground-truth” community assignment and report in Table 1 the ARIs of each algorithm,
where each ARI is averaged from 10 repeating experiments. On the tested data set, we
observe that our algorithms MLE-SC and MLE-SDP outperform all other baselines.

Data set Herm HermRW DI-SIM B-Sym A + AT MLE-SC MLE-SDP

email-Eu-core122 0.065 0.000 -0.005 0.259 0.301 0.608 0.608
email-Eu-core233 0.012 0.009 0.043 0.358 0.266 0.479 0.479

Table 1: ARIs from tests on email-Eu-core.

We present in Figure 5 and Figure 6 visual representations of the graph adjacency relation
before and after clustering. From the visualization, we observe distinctive clustering pat-
terns exhibited by the compared algorithms: Herm, HermRW and DI-SIM tend to cluster
vertices in a way that the cross-cluster edges are oriented in the same direction while not
accounting much for the edge density. In contrast, both the näıve symmetrization and B-
Sym demonstrate an awareness of inhomogeneity between-cluster and within-cluster edge
density. Our proposed approaches strike a balance between the cross-cluster edge orienta-
tion and the inhomogeneity edge densities, where the weights are learned from the iterative
approach. We also report and visualize in Appendix A.5.3 the clustering results where our
proposed algorithms attain low ARI values. We comment that in this second data set, our
proposed algorithms still discover meaningful partitions that exhibit blockwise patterns
from the edge density or edge orientation, but the clusters recovered by our algorithms do
not agree with the community labelling provided.

6. Concluding remarks and discussions

This paper studies the directed graph clustering problem through the lens of statistics. In
particular, we formulate the task of directed clustering as a statistical estimation prob-
lem on the DSBM, and employ the MLE to infer the underlying community labels. This

2. pick the 1st and 2nd largest communities from email-Eu-core dataset

3. pick the 2nd and 3rd largest communities from email-Eu-core dataset
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Figure 5: A − AT before and after clustering. In this experiment, we test on a directed
graph consisting of the 1st and 2nd largest communities from the email-En-core dataset
Leskovec et al. (2007).
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Figure 6: A−AT before and after clustering. In this experiment, we test a directed graph
consisting of the 2nd and 3rd largest communities from email-En-core Leskovec et al. (2007)
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statistical formulation gives rise to a novel flow optimization heuristic, which jointly con-
siders the edge density and edge orientation. Building on our formulation, we propose a
new Hermitian matrix representation of directed graphs, establishing a connection between
its spectrum and the MLE optimization problem. Based on this Hermitian matrix rep-
resentation, we introduce two efficient and interpretable directed clustering algorithms, a
spectral clustering algorithm (Algorithm 1) and an SDP clustering algorithm (Algorithm 2,
along with its more scalable version, Algorithm 3). We compare, both quantitatively and
qualitatively, our proposed algorithms with existing directed clustering methods on syn-
thetic data and real-world data. In addition to our experimental evaluation, we conduct a
perturbation analysis using Davis-Kahan’s theorem and establish an upper bound on the
misclustering error of Algorithm 1.

Our current work on directed graph clustering does not consider any prior knowledge about
the community assignment. Therefore, it would be natural to extend this work by systemat-
ically integrating side information or prior knowledge. One way to achieve this is to consider
the community labels as latent random variables and the side information can be modelled
as the prior distribution of community labels. Correspondingly, community recovery can
then be achieved by applying Bayesian methods, such as maximum-a-posteriori, and Gibbs
sampling. In addition to the statistical view, we also present an equivalent (regularized)
flow optimization heuristic for directed clustering. From this optimization perspective, one
can directly incorporate prior knowledge about community labels by imposing constraints
on the flow optimization problem. Alternatively, the optimization interpretation also al-
lows using a constrained clustering method from Cucuringu et al. (2016), where one can
merge the data matrix with any available constraints by converting the constraints into a
penalty term of the optimization objective.

This work focuses on studying the two-cluster directed stochastic block model. Extending
the analysis to multi-cluster models is not as easy as the inductive analysis on undirected
graphs. The challenge stems from the asymmetric nature of the problem. To elaborate
on this point, if one additional cluster is added to the current two-cluster model, there
would be multiple approaches to instantiate the problem: e.g., add a new source cluster
to the existing source cluster, add a new sink cluster to the existing source cluster, etc.
Therefore, for a multi-cluster model, one needs to specify a directed meta-graph structure
to determine the relationship between different clusters, which may vary from case to case.
Consequently, the task of inferring the number of clusters, as well as clustering multi-
cluster directed graphs, may require a more elaborated analysis and potentially further
assumptions. The main difficulty of the problem stems from the fact that this underlying
meta-graph structure is not known to the user, a-priori. While we defer such work for
future research, we comment that one may iteratively apply the two-cluster algorithms on
the clustered subgraphs to obtain a hierarchical clustering structure.
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Our study focuses on clustering unweighted simple directed graphs, and it would be practi-
cally meaningful and interesting to consider clustering more general and complex directed
graphs. For instance, our flow optimization heuristic can readily be adapted for clustering
weighted directed graphs. In addition, recent work Tian and Lambiotte (2023) adopts a
Hermitian matrix representation for signed graphs. It would be interesting to explore the
connections between signed graphs and directed graphs, which could possibly lead to a
more general Hermitian matrix design that can unify these two types of graphs, as in the
recent work of He et al. (2022) that introduced the Magnetic Signed Laplacian, a Hermi-
tian PSD matrix. Moreover, from a statistical perspective, the DSBM we studied in this
paper has its limitations in describing real-world networks, and thus it would be interesting
to extend our analysis to random directed graph models that better capture some of the
real-world network features, such as power-law distribution Michel et al. (2019) or hetero-
geneity of node degrees Rohe et al. (2016). Finally, extending our proposed methodology
to the setting of time-evolving networks Matias and Miele (2017) is another timely avenue
of future research, potentially operating under the assumption that the node cluster labels
vary smoothly over time.
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totic analysis of the stochastic block model for modular networks and its algorithmic
applications. Physical review E, 84(6):066106, 2011.

28

http://128.84.4.34/pdf/1908.02096
http://128.84.4.34/pdf/1908.02096
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Appendix A. Appendix

A.1 Summary on notations

Notation Definition

G(V, E) Graph with vertex set V and edge set E
u⇝ v There is an edge pointing from vertex u to vertex v
u ̸∼ v There is no edge between vertex u and vertex v
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A Graph adjacency matrix, A ∈ {0, 1}n×n and Auv = 1 iff u⇝ v
C1 Source community
C2 Target community
V Set of all vertices, V = C1 ∪ C2
c(·) Community labelling function, c(·) : V → {1, 2} where c(u) = 1 iff u ∈ C1
H̃ MLE derived Hermitian matrix, H̃ = iwi(A−AT ) + wr(A + AT ) + wcJ

TF(C1, C2) Total flow between C1 and C2, TF(C1, C2) =
∑

u∈C1v∈C2

(Auv + Avu)

NF(C1, C2) Net flow from C1 to C2, NF(C1, C2) =
∑

u∈C1v∈C2

(Auv −Avu)

HT Transpose of H
H∗ Conjugate transpose of H
Hj∗ The j-th row vector of H

[H1, H2] Concatenating columns of H1 and H2

∥H∥ Spectral norm of H, ∥H∥ = |λ1(H)|
∥H∥F Frobenius norm of H, ∥H∥F =

√∑
j λ

2
j (H)

diag(H) Create a diagonal matrix by taking the main diagonal elements of H
ℜ(H) Take the real part of the matrix H;
ℑ(H) Take the imaginary part of the matrix H
vj(H) The j-th eigenvector of H
ARI Adjusted Rand Index

M ∈ {0, 1}N×2 Membership matrix
1(·) Indicator function, 1(p) = 1 if claim p is true, otherwise 1(p) = 0

gn = O(fn) lim sup
n→∞

|gn|
fn

< ∞

gn = Θ(fn) lim sup
n→∞

|gn|
fn

< ∞ and lim inf
n→∞

|gn|
fn

> 0

P(·) Probability measure
E[·] Expectation

Table 2: Summary on notations

A.2 Proof of MLE on DSBM (Theorem 1)

We detail the derivation of the optimization problem (MLE) from the maximum likelihood
estimator. To start with, we explicitly express the likelihood function as a matrix, which
simply relies on subdividing the likelihood function according to which community an edge
belongs to.

Lemma 7 Consider a directed graph with adjacency matrix A sampled from the model
DSBM(n1, n2, p, q, η). Then, applying the maximum likelihood estimation is equivalent to
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solving the following combinatorial optimization problem

max
1

2

〈
Mintra,1C11T

C1 + 1C21T
C2
〉

+
〈
Minter, 1C11T

C2
〉

(MLE)

s.t. 1C1 ∈ {0, 1}N

1C1 + 1C2 = 1

where 1C1 ,1C2 ∈ {0, 1}N are the indicator vectors for cluster C1 and C2 separately, and

Mintra = log (1/2p)(A + AT ) + log (1 − p)(J − I −A−AT ),

Minter = log (q(1 − η))A + log (ηq)AT + log(1 − q)(J − I −A−AT ),

are derived from the log-likelihood functions for intra-community and inter-community
edges.

Proof Let A be the adjacency matrix of a directed graph generated from DSBM(n1, n2, p, q, η).
For a particular clusterization of the graph, we use c to denote its community labeling func-
tion c : V → {C1, C2}, and we use the vectors 1C1 ,1C2 ∈ {0, 1}N to indicate community C1
and C2 separately, where 1C1 + 1C2 = 1. The log likelihood function of A given 1C1 and 1C2
can be decomposed as follows

log P(A|1C1 , 1C2) =
∑
u<v

log P(Auv|c(u), c(v))

=
∑
u<v

c(u)=c(v)

log P(Auv|c(u), c(v)) +
∑
u<v

c(u)=C1,c(v)=C2

log P(Auv|c(u), c(v)),

(16)

where the first term in (16) is only summing over intra-community pair, and the second
term handles the inter-community pair.

For an intra-community vertex pair u, v, the log-likelihood function is

log P(Auv|c(u) = c(v)) =


log (1/2p) if u⇝ v,

log (1/2p) if v ⇝ u,

log (1 − p) if u ̸∼ v.

This intra-community log-likelihood function coincides with the matrix

Mintra ≜ log (1/2p)(A + AT ) + log (1 − p)(J − I −A−AT ),

on the entries that represent intra-community pairs, thus allowing us to convert the intra-
community summation in (16) into the following matrix multiplication form∑

u<v
c(u)=c(v)

log P(Auv|c(u), c(v)) =
1

2

〈
Mintra,1C11T

C1 + 1C21T
C2
〉
. (17)
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For an inter-community vertex u ∈ C1, v ∈ C2, the log-likelihood function is

log P(Auv|c(u) = C1, c(v) = C2) =


log ((1 − η)q) if u⇝ v,

log (ηq) if v ⇝ u,

log (1 − q) if u ̸∼ v.

Similar to the approach followed for the intra-community case, we convert the inter-
community summation in (16) into the matrix multiplication form∑

u<v
c(u)=C1,c(v)=C2

log P(Auv|c(u), c(v)) =
〈
Minter, 1C11T

C2
〉
. (18)

where

Minter ≜ log ((1 − η)q)A + log (ηq)AT + log (1 − q)(J − I −A−AT ).

Combining (17), (18) and (16), we have

log P(A|1C1 ,1C2) =
1

2

〈
Mintra,1C11T

C1 + 1C21T
C2
〉

+
〈
Minter, 1C11T

C2
〉
.

To arrive at a more compact expression for the optimization formulation, we introduce
an equivalent Hermitian matrix optimization framework. The transformation from the
real-valued matrix optimization to the Hermitian optimization builds on the following
observation.

Lemma 8 Consider an arbitrary Hermitian matrix H = ℜ(H) + iℑ(H), where ℜ(H) ∈
Rn×n is symmetric and ℑ(H) ∈ Rn×n is skew-symmetric. Let x ∈ {i, 1}n be the complex
community indicator vector, where xu = i for u ∈ C1. Then, the quadratic form x∗Hx is
the sum of entries in ℜ(H) that are in the same community, plus the sum of entries in
ℑ(H) that belong to different communities, i.e.,

x∗Hx =
∑

u,v∈C1
or u,v∈C2

ℜ(H)uv +
∑

u∈C1v∈C2
or u∈C2,v∈C1

ℑ(H)uv = 2
∑
u<v

u,v∈C1
or u,v∈C2

ℜ(H)uv + 2
∑
u<v,

u∈C1v∈C2
or u∈C2,v∈C1

ℑ(H)uv.

A.3 Proofs in perturbation analysis

A.3.1 Proof of Lemma 4 (eigenspace of E[H̃])

Lemma 4 For the DSBM(n1, n2, p, q, η), the population version of the proposed Hermitian
matrix E[H̃] has a unique largest eigenvalue. The top eigenvector v has exactly two distinct
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values that indicate the community labels where the distance between them d can be easily
computed using (21). Moreover, the eigengap

|λ1(E[H̃]) − λ2(E[H̃])| = min{∆, |1/2N(wrp + wc)| + 1/2∆} ≥ 1/2∆. (10)

where

∆ =
√

N2(wrp + wc)2 − 4n1n2 ((wrp + wc)2 − |wr + wc + iwi(1 − 2η)q|2) (11)

Proof Recall that the population version of H̃ has a block structure and can be written
as

E[H̃] = MQMT − (pwr + wc)I

Q =

[
0 1
−1 0

]
+ wr

[
p q
q p

]
+ wc

[
1 1
1 1

]
,

where M ∈ {0, 1}N×2 is the community membership matrix, and Muc = 1 denotes that
vertex u belongs to community c. We further normalize the columns of M as follows

MQMT = MD−1DQD(MD−1)T

D =

[√
n1 0
0

√
n2.

]
Here the normalized matrix MD−1 has orthonormal column vectors.

Let DQD = UΛU∗ be the eigendecomposition on the 2 × 2 matrix, Then, the N × N
matrix MQMT can be diagonalized as

MQMT = (MD−1U)Λ(MD−1U)∗,

where diag(Λ) contains the eigenvalues of MQMT and the columns of MD−1U ∈ RN×2

are the orthonormal eigenvectors. Therefore, the problem of computing the eigenpairs of
E[H̃] reduces to compute the eigenpairs of the 2 × 2 matrix DQD where

DQD =

[
n1(wrp + wc)

√
n1n2(wrq + wc + i(1 − 2η)q)√

n1n2(wrq + wc − i(1 − 2η)q) n2(wrp + wc)

]

For the eigenvalues, via a simple calculation we arrive at

λ1(DQD) =
1

2
(N(wrp + wc) + ∆) ,

λ2(DQD) =
1

2
(N(wrp + wc) − ∆) ,
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where

∆ =
√
N2(wrp + wc)2 − 4n1n2((wrp + wc)2 − |wrq + wc + iwiq(1 − 2η)|2).

Therefore, we obtain the eigenvalues of E[H] = MQMT

λ1(E[H̃]) =
1

2
(N(wrp + wc) + ∆) − (wrp + wc)

λ2(E[H̃]) =
1

2
(N(wrp + wc) − ∆) − (wrp + wc)

λ3(E[H̃]) = . . . = λN (E[H̃]) = −(wrp + wc).

The eigenvalue that obtains the largest magnitude is unique and it is λ1(E[H̃]) when
N(wrp + wc) ≥ 0, or λ2(E[H̃]) when N(wrp + wc) < 0. The gap between the largest
and the second largest eigenvalue is

min{∆, |1/2N(wrp + wc)| + 1/2∆}. (19)

One can easily verify that the eigengap lies in [∆2 ,∆]. Therefore, the lower bound ∆
2 is a

good approximation to the spectral gap in the sense that they are of the same order.

Next, we move on to compute the top eigenvector of E[H̃]. We use x = (x1, x2) ∈ C2 to
denote the top eigenvector of DQD, and we have that x1 ̸= x2. Then, the top eigenvector
of E[H̃] can be easily computed through v = MD−1x, and it has two distinct values

v(u) =

{
x1/

√
n1 if u ∈ c1,

x2/
√
n2 if u ∈ c2.

(20)

The distance between the two cluster centroids d is simply

d =

∣∣∣∣ x1√
n1

− x2√
n2

∣∣∣∣ . (21)

A.3.2 Useful theorems from matrix perturbation analysis

Theorem 9 (Davis-Kahan’s perturbation bound Davis and Kahan (1970)) Let H,R ∈
H be two Hermitian matrices. Then, for any a ≤ β and δ > 0 it holds that∥∥P[α,β](H) − P(α−δ,β+δ)(H + R)

∥∥ ≤ ∥R∥
δ

.

Here P[α,β](H) denotes the projection matrix on the subspace spanned by eigenvectors of H
with corresponding eigenvalues lie between [α, β], and P(α−δ,β+δ)(H + R) is the projection
matrix on the subspace spanned by eigenvectors of H + R with eigenvalues lie between
(α− δ, β + δ).
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Theorem 10 (Weyl’s inequality Weyl (1912)) Let H,R ∈ H be two Hermitian ma-
trices. Then for every 1 ≤ j ≤ n, the j-th largest eigenvalues of H and H + R obey

|λj(H) − λj(H + R)| ≤ ∥R∥.

In addition to the eigenspace perturbation bound in Themrem 9, we summarize in Lemma 11
comparisons over two different representations of the eigenspace distance, which will useful
in the error analysis of k-means in Section 4.3.

Lemma 11 [Adapted From Lemma 2.1 in Chen et al. (2021)] For any U, Ũ ∈ CN×k, we
have

min
O∈Ok×k

∥U −OŨ∥F ≤ ∥UU∗ − Ũ Ũ∗∥F

A.3.3 Proof of Lemma 5 (eigenspace perturbation)

Lemma 5 Given a directed graph from DSBM(n1, n2, p, q, η) and its Hermitian matrix
representation H̃, the projection matrix of the top eigenvector has

∥vv∗ − v̂v̂∗∥F ≤ 2
√

2
∥R∥

λ1(E[H̃]) − λ2(E[H̃])

Proof [Proof on Lemma 5] From the Davis-Kahan’s pertubation bound, we have

∥v̂v̂∗ − vv∗∥ ≤ ∥R∥
|λ1(E[H̃]) − λ2(H̃)|

. (22)

Using Wyle’s inequality, we have that

|λ2(E[H̃]) − λ2(H̃)| ≤ ∥R∥

Therefore, the denominator in (22) can be further lower bounded by |λ1(E[H̃])−λ2(E[H̃])|−
∥R∥, and we obtain

∥v̂v̂∗ − vv∗∥ ≤ ∥R∥
|λ1(E[H̃]) − λ2(E[H̃])| − ∥R∥

. (23)

The denominator in (23) involves comparing the spectral gap |λ1(E[H̃]) − λ2(E[H̃])| and
∥R∥, which further requires an extra condition on the denominator being positive, to allow
the inequality to hold. To circumvent this limitation, we divide the comparison into two
cases
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• if ∥R∥ ≥ 1
2 |λ1(E[H̃]) − λ2(E[H̃])|, then we have

∥v̂v̂∗ − vv∗∥ ≤ 1 ≤ 2∥R∥
|λ1(E[H̃]) − λ2(E[H̃])|

.

• if ∥R∥ ≤ 1
2 |λ1(E[H̃]) − λ2(E[H̃])|, then we use the perturbation bound (23) and get

∥v̂v̂∗ − vv∗∥ ≤ ∥R∥
|λ1(E[H̃]) − λ2(E[H̃])| − ∥R∥

≤ 2∥R∥
|λ1(E[H̃]) − λ2(E[H̃])|

.

Combining the two cases, we obtain that for any ∥R∥, the following upper bound always
holds

∥v̂v̂∗ − vv∗∥ ≤ 2∥R∥
|λ1(E[H̃]) − λ2(E[H̃])|

.

Since for any rank r Hermitian matrix H, ∥H∥F ≤
√
r∥H∥. Therefore, we have that

∥vv∗ − v̂v̂∗∥F ≤
√

2∥vv∗ − v̂v̂∗∥ ≤ 2
√

2∥R∥
|λ1(E[H̃]) − λ2(E[H̃])|

.

A.3.4 Proof of Lemma 6 (bound the random perturbation ∥R∥ )

Lemma 12 (Matrix Bernstein Tropp et al. (2015)) Consider a finite sequence {Sk}
of independent, random matrices with dimension d. Assume that

ESk = 0 and ∥Sk∥ ≤ L for each index k.

For the random matrix Z =
∑

k Sk, let v(Z) be the matrix variance statistic of the sum:

v(Z) = max

{∥∥∥∥∥∑
k

E (SkS
∗
k)

∥∥∥∥∥ ,
∥∥∥∥∥∑

k

E (S∗
kSk)

∥∥∥∥∥
}
.

Then, for all t ≥ 0,

P{∥Z∥ ≥ t} ≤ 2d exp

(
−t2/2

v(Z) + Lt/3

)
.
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Lemma 6 (Bound on random perturbation R) Consider a directed graph from DSBM
(n1, n2, p, q, η) and its Hermitian matrix representation H̃. We use pmax = max{p, q} to
denote the maximum edge probability. Assume that the maximum edge probability is above
the connectivity threshold, i.e.,

Npmax = Ω(logN). (12)

Then there exist an absolute constant ϵ and

C = (2 + ϵ)
√
w2
r + w2

i

(
logN

Npmax
+ 1

)
= Θ

(√
w2
r + w2

i

)
, (13)

such that the random perturbation R = H̃ − E[H̃] has

P(∥R∥ ≥ C
√

Npmax logN) ≤ N−ϵ.

Proof Recall that by definition random perturbation R = H̃−E[H̃] is Hermitian. We first
decompose it into summation of perturbations on different entries R =

∑
j<l R

jl where Rjl

is also a random Hermitian and only has non-zero entries at (j, l) and (l, j). If j, l belongs
to the same community σ(j) = σ(l)

Rjl
jl =


wr(1 − p) + iwi w.p. p/2

wr(1 − p) − iwi w.p. p/2

−wrp w.p. 1 − p.

(24)

If j, l belongs to different communities σ(j) ̸= σ(l), and without loss of generality we assume
j ∈ c1, l ∈ c2

Rjl
jl =


wr(1 − q) + iwi(1 − (1 − 2η)q) w.p. q(1 − η)

wr(1 − q) − iwi(1 + (1 − 2η)q) w.p. qη

−wrq − iwi(1 − 2η)q w.p. 1 − q

(25)

From the Matrix Bernstein’s inequality in Lemma 12, we have for any t ≥ 0

P(∥R∥ ≥ t) ≤ 2N exp

(
−t2/2

Var(R) + Lt/3

)
,

where L is an upper upper of ∥Rjl∥ and Var(R) is the variance.

For computing L, recall that by definition

∥Rjl∥ ≤ L, ∀j ̸= l.
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Here the matrix spectral norm can be simplified to be upper bounded by |Rjl| because
the spectral norm is always upper bounded by the maximum absolute values of each en-
try. Therefore, it suffices to take L as an upper bound on maxj ̸=l |Rjl|. From (24), we

have that, if σ(j) = σ(l), then |Rjl| ≤
√
w2
r(1 − p)2 + w2

i ; if σ(j) ̸= σ(l), then |Rjl| ≤√
w2
r(1 − q)2 + w2

i (1 + (1 − 2η)q)2. Combining the two, it suffices for us to take

L =
√

w2
r(1 − pmin)2 + w2

i (1 + (1 − 2η)q)2 ≤ 2
√

w2
r + w2

i . (26)

To compute the variance term Var(R), first recall by definition

Var(R) = max


∥∥∥∥∥∥
∑
j<l

E[Rjl(Rjl)∗]

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
∑
j<l

E[(Rjl)∗Rjl]

∥∥∥∥∥∥
 .

For each j < l, we have Rjl(Rjl)∗ = (Rjl)∗Rjl and we use M jl to denote the product

matrix. In M jl, the only two non zero entries are M jl
jj and M jl

ll and M jl
jj = M jl

ll = RjlRjl.

Therefore, E[Rjl(Rjl)∗] also only has two non-zero entries at (j, j) and (l, l) for every j < l
and thus, the spectral norm of the matrix summation is simply the largest diagonal element,
i.e.,

Var(R) = max
j∈[N ]

∑
l ̸=j

E[M jl
jj ]. (27)

In (27), M jl
jj is a real random variable whose distribution can be derived from (24) and

(25), and we have that, if σ(j) = σ(l), then

M jl
jj =

{
w2
r(1 − p)2 + w2

i w.p. p

w2
rp

2 w.p. 1 − p,

and E[M jl
jj ] = w2

rp(1 − p) + pw2
i .

If σ(j) ̸= σ(l), then

M jl
jj =


w2
r(1 − q)2 + w2

i (1 − (1 − 2η)q)2 w.p. q(1 − η)

w2
r(1 − q)2 + w2

i (1 + (1 − 2η)q)2 w.p. qη

w2
rq

2 + w2
i (1 − 2η)2q2 w.p.1 − q,

and E[M jl
jj ] = w2

rq(1−q)+w2
i q(1− (1−2η)2q). Since, without loss of generality, we assume

p, q ≤ 0.5, thus for all j ̸= l we have E[M jl
jj ] ≤ w2

rpmax(1−pmax) +w2
i pmax. Therefore, from

(27), we arrive at

Var(R) ≤ N(w2
rpmax(1 − pmax) + w2

i pmax) ≤ Npmax(w2
r + w2

i ). (28)
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Using the Matrix Bernstein’s inequality, we have for t = C
√
Npmax logN ,

P(∥R∥ ≥ t) ≤ 2 exp

(
− C2Npmax logN

2Var(R) + 2LC
√
Npmax logN/3

+ logN

)
≤ 2 exp

(
− C2Npmax logN

2Npmax(w2
r + w2

i ) + 2L
√
Npmax logN/3

+ logN

)
(29)

= 2 exp

(
− C2

2(w2
r + w2

i ) + 2LC/3
√

logN/Npmax

logN + logN

)
.

Here (29) follows from the analysis on Var(R) in (28). From (30), if there exist an absolute
ϵ, such that

C2

(w2
r + w2

i ) + LC/3
√

logN/Npmax

≥ 2 + ϵ, (30)

then we have P(∥R∥ ≥ t) ≤ N−ϵ, which conclude the proof. It turns out that we can
always find an absolute constant C such that (30) holds. To see this, first note that (30)
is equivalent to

C ≥ (1 + ϵ/2)L

√
logN

Npmax
+

√
(2 + ϵ)(w2

r + w2
i ) + (1 + ϵ/2)2L2

logN

Npmax
.

Since a2 + b2 ≤ (a + b)2 for a, b > 0, it suffices to let

C = (2 + ϵ)L
logN

Npmax
+ (2 + ϵ)

√
w2
r + w2

i .

Since L ≤ 2
√
w2
r + w2

i , we have

C ≤ (2 + ϵ)
√

w2
r + w2

i

(
logN

Npmax
+ 1

)
= Θ

(√
w2
r + w2

i

)
, (31)

where the last equality is due to the connectivity assumption (12).

A.3.5 Useful theorem in k-means error analysis

Lemma 13 (k-means error adapted from Lemma 5.3 in Lei and Rinaldo (2015))
For ϵ > 0 and any two matrices Û , U , such that U = MX with M ∈ {0, 1}N×2 be the indi-
cator matrix and X ∈ R2×2 have its row vectors representing the centroids of two clusters,
let (M̂, X̂) be a (1+ϵ) solution to the k-means problem and Ū = M̂X̂. For δ = ∥X1∗−X2∗∥,
define S = {j ∈ [N ] : ∥Ūj∗ − Uj∗∥} ≥ δ/2 then

|S|δ2 ≤ 4(4 + 2ϵ)∥Û − U∥2F . (32)
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A.4 Proof on Corollary 3

Corollary 14 Consider directed graphs generated from the DSBM (N/2, N/2, p, p, η). As
N → ∞, if η ≤ 0.5 − ϵ with an absolute constant ϵ > 0, then the misclustering error of
Algorithm 1 is such that

l(σ, σ̂)

N
= O

(
logN

Np

)
(8)

If η = 0.5 − o(1), we have that

l(σ, σ̂)

N
= ω

(
logN

Np

)
. (9)

Proof From Theorem 2, we have the general upper bound on the error bound

l(σ, σ̂)

N
≤ 64(2 + ϵ)C2pmax logN

d2∆2
= Θ

(
C2pmax logN

d2∆2

)
, (33)

where d and ∆ depends on E[H̃]. When p = q, we have that

wr = log

(
1

4η(1 − η)

)
, wi = log

η

1 − η
, wc = 0.

Moreover, notice that normalizing H̃ does not affect the clustering error. For the rest of
the discussion, we consider 1/wiH̃ as the input Hermitian matrix for Algorithm 1, and
correspondingly we denote the updated coefficient as

w̃r = log

(
1

4η(1 − η)

)
/ log

η

1 − η
, w̃i = 1, w̃c = 0.

Because w̃r ≤ 1 and w̃i = 1, we have that the term C2 in (33) has C2 = Θ(w2
r +w2

i ) = Θ(1).
For analyzing the asymptotic behaviour of the error bound in (33), we are only left with
the centroid distance d and eigengap bound ∆.

Following from the definition of ∆ in (11), we have

∆ = Np

√
w̃r

2 + w̃i
2(1 − 2η)2. (34)

For computing the centroid distance d, recall that the population matrix can be written
as

E[H̃] = MQMT − w̃rpIN×N ,
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where M is the community indicator matrix and the 2 × 2 matrix Q has

Q =

[
w̃r w̃r + (1 − 2η)i

w̃r − (1 − 2η)i w̃r

]
.

Since n1 = n2 = N/2, we have that the two distinct values in v1(E[H̃]) (see (20)) to be
the values of v1(Q) divided by

√
N/2. We can easily compute that the top eigenvector

has

v1(E[H̃]) =

{
− wr+wi(1−2η)i√

N |−wr+wi(1−2η)i| for u ∈ c1

1/
√
N for u ∈ c2.

We visualize the two cluster centroids in Figure 7a. Let θ = arccos
(

wr
|wr+wi(1−2η)i|

)
be the

angle between the two values in the complex plane. Therefore, we have

d2 =
1

N
(1 − cos θ) =

2 sin2 θ

N
. (35)

Combining (33), (34), and (35) and letting L = |w̃r + i(1 − 2η)| sin(θ/2), we have

l(σ, σ̂)

N
≤ Θ

(
logN

NpL2

)
.

We can see that the upper bound of misclustering error is determined by two independent
variables Np and L2. First, note that this error bound (8) is inversely proportional to L2,
which is by definition a function on η. To see how the value L changes as η varies from 0
to 0.5, we plot L(η) in Figure 7b. We observe that L(η) = Θ(1) when η is bounded away
from 0.5. Therefore, if η ≤ 0.5 − ϵ with an absolute constant ϵ > 0, then the misclustering
error of Algorithm 1 is such that

l(σ, σ̂)

N
= O

(
logN

Np

)
When η converges to 0.5 (when the imbalance structure disappears), L(η) converges to 0.
Therefore, if η = 0.5 − o(1), we have that

l(σ, σ̂)

N
= ω

(
logN

Np

)
.

The above results on misclustering error bounds agree with the intuition that lower values
of η denote a less noisy problem instance, and thus lead to a lower clustering error.

A.5 Additional experimental details

A.5.1 Experiments on DSBM with known DSBM parameters
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(a) Visualization on l and θ. (b) Plot of l as function of η.

Figure 7: Visualization of important parameters for representing the error bound.
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Figure 8: Cluster DSBM with different p, q, η. MLE-SC represents Algorithm 1 with true
model parameters; MLE-SDP represents Algorithm 3 with true model parameters.
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Figure 9: Visualization of A − AT before and after clustering where A is sampled from
DSBM with n1 = n2 = 100, p = 0.1, q = 0.05, η = 0.1.

A.5.2 Visualization on directed adjacency matrices

In the following experiment, we test the algorithms on small graphs with 200 vertices for
visualization purposes.

A.5.3 Additional dataset

Data set Herm HermRW DI-SIM B-Sym A + AT MLE-SC MLE-SDP

PolBlog 4 0.008 -0.000 -0.001 0.148 0.177 0.014 0.105

Table 3: ARIs from experiments on the real-world PolBlog data set.

4. Adamic and Glance (2005)
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Figure 10: Visualization of A − AT before and after clustering where A is sampled from
DSBM with n1 = n2 = 100, p = 0.05, q = 0.05, η = 0.1.
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Figure 11: Visualization of A − AT before and after clustering where A is the adjacency
matrix of the PloBlog graph.
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